Exhaustification over Questions in Japanese

Yurie Hara

JSPS/Kyoto University

Kin 3 Round Table Meetings
Portner and Yabushita (1998) observe that in Japanese, a subordinate subject under an attitude predicate obtains different scope interpretations depending on whether the subject is Contrastive-marked or not.

(1) a. JOHN-dake-ga kuru to omotte-ita.
 John-only-Nom come Comp thought
 ‘I thought that only John would come.’ (thought > only)

b. JOHN-dake-wa kuru to omotte-ita.
 John-only-Con come Comp thought
 ‘Only John, I thought that he would come.’ (only > thought)
Another contrast between *dake-wa* and *dake-ga* is found in question formation:

dake-ga is acceptable in a *wh*-question while *dake-wa* is not.

(2)

a. JOHN-dake-*ga* nani-o kai-mashi-ta-ka?
 John-only-Nom what-Acc buy-Hon-Past-Q
 ‘What did only John buy?’

b. *JOHN-dake-*wa* nani-o kai-mashi-ta-ka?
 John-only-Con what-Acc buy-Hon-Past-Q
This paper

1. supports the idea that the exceptive meaning denoted by *dake* contributes to an expressive level of meaning.
2. supports the idea that the *wa*-marked element takes scope higher than a proposition.
3. accounts for the unavailability of *dake-wa* in wh-Q under Krifka’s (2001) non-Boolean algebra of Speech Acts.
Dake

Kuno 1999

dake primarily asserts the affirmative proposition while secondarily asserting the negative one.
Example 1

(3)
 a. In order to make an around-world trip,
 b. EIGO-dake hanas-er-eba ii
 English-dake speak-able-if good
 (i) ‘It’s OK if you can speak English.’
 (ii) #‘It’s OK if you cannot speak any other languages.’
 (Yoshimura 2005)

• (3–b) would be infelicitous if the exceptive meaning is embedded under a conditional.

• (3–b) is felicitous only under the interpretation where the affirmative proposition ‘you can speak English’ is embedded.
Example 2

- In contrast, if the context prefers that the negative proposition to be an argument, the use of *dake* turns out to be infelicitous.

(4) #Nihongo-dake dekiru node, shuushoku deki-nakat-ta.
 Japanese-dake capable because, getting.employed capable-Neg-Past

 a. #‘I couldn’t get a job because I can speak Japanese.’
 b. Intended (unavailable): ‘I couldn’t get a job because I cannot speak any other languages.’ (Satoshi Tomioka, p.c.)
Yoshimura 2005

Yoshimura (2005)

Japanese *dake* asserts the prejacent (affirmative) proposition and entails the exceptive meaning.
I equate the notion of ‘entailment’ in Horn [2002] and Yoshimura [2005] to ‘conventional implicature’ in the sense of Potts [2005].

(5) is analyzed as having two independent meanings:

1. an assertion
2. a conventional implicature.

(5) JOHN-dake-ga kita.
John-dake-Nom came.

a. Assertion: John came.
b. conventional implicature (‘entailment’ in Horn 2002 and Yoshimura 2005):
No one else came.
Assumption

- Yoshimura’s (2005) proposal is based on Horn’s [2002] assumption:

(6) Only the assertional content can be a complement of a higher functor.
Affirmative

(3) a. In order to make an around-world trip,
b. EIGO-dake hanas-er-eba ii English-dake speak-able-if good
(i) ‘It’s enough if you can speak English.’
(ii) #‘It’s enough if you cannot speak any other languages.’
(Yoshimura 2005)

- The affirmative proposition ‘you can speak English’ is an assertional content.
- It can be embedded under the conditional.
Similarly, the exceptive meaning ‘I cannot speak any other languages’ is a conventional implicature,

Hence, it cannot be under the scope of because.
(7) Interpretation of *dake* α:

a. α holds; and
 (assertion)

b. No other alternatives from the set of relevant contrasts C other than α hold.
 (conventional implicature)

- A sentence containing *dake* involves two commitments:
 - the positive one expressed by the prejacent proposition and
 - the negative one expressed by the exhaustive semantics of *dake*.
Scope

Portner and Yabushita (1998)
The *wa*-marked element serves as a link to the information expressed by the sentence.

Hara (2006)
The use of *wa* introduces the operator CON that must be linked to an attitude holder.

Tomioka (2006)
Contrastiveness operates on speech acts, not propositions.
(1)

a. JOHN-dake-ga kuru to omotte-ita.
 John-only-Nom come Comp thought
 ‘I thought that only John would come.’
 (thought > only)

b. JOHN-dake-wa kuru to omotte-ita.
 John-only-Con come Comp thought
 ‘I thought as for only John that he would come.’
 (only > thought)

• the wa-marked subject is structurally higher than the embedded sentence.

• As a consequence, the exhaustification expressed by dake in (1-b) also takes wide scope with respect to the embedded proposition.
(1-b)
JOHN-dake-wa kuru to omotte-ita.
John-only-Con come Comp thought
‘I thought as for only John that he would come.’

(8) Interpretation of (1-b):

a. I thought as for John that he would come; and

b. It is not the case that I thought as for other people that they would come.
The *wa*-marked element serves as a speech-act modifier. Hence, when *dake* is used with *wa*, the exhaustification take place at a higher level.
Pair-list

Krifka’s (2001) proposal

The only operation involved in speech acts is conjunction.

Motivation

A pair-list reading of a *wh*-question is possible only with a universal quantifier.
Example

(9) Which dish did every guest make?
 a. (Every guest made) pasta. (narrow-scope)
 b. (Every guest made) his favorite dish. (functional)
 c. Al (made) the pasta; Bill, the salad; and Carl, the pudding. (pair-list)

(10) Which dish did most/several/a few/no guests make?
 a. Pasta. (narrow-scope)
 b. Their favorite dish. (functional)
 c. #Al (made) the pasta; Bill, the salad. (pair-list)
Conjunction

- The pair-list reading is derived by universal quantification over the question act.
- Universal quantification over the question act is possible since universal quantification is reduced to conjunction.

\[(11) \text{ Which dish did every guest make? } \]
\[\iff \text{For every guest } x: \text{ Which dish did } x \text{ make?} \]
\[\iff \text{Which dish did Al make, and} \]
\[\text{which dish did Bill make, and} \]
\[\text{which did Carl make?} \]
(Krifka 2001)
Disjunction

On the other hand, other quantifiers like *most*, which involve disjunction, cannot operate over question acts; hence, fail to have a pair-list reading (13).

(12) #Which dish did most guests make? (Krifka 2001)
 ⇔ For most guests x: Which dish did x make?
 ⇔ Which dish did Al make and which dish did Bill make, or
 which dish did Al make and which dish did Carl make, or
 which dish did Bill make and which dish did Carl make?
Conversational Game

Speech acts as moves in conversational games

Speech acts lead from one set of social commitments to another set. (Wittgenstein, 1958)

- Conjoined acts \([A \& A'](s) \rightarrow\)
 - the union of the commitments that \(A(s)\) and \(A'(s)\) would have led to:
 - \(A(s) \cup A'(s)\)
 - the same type

(13)
 Which dish did Bill make? – The salad.
 b. Which dish did Al make? And which dish did Bill make?
 Al (made) the pasta, and Bill the salad.
A disjunction of A and A' at the state s →

- a **set** of commitment states which we would have to understand disjunctively,
- $\{A(s), A(s')\}$
- higher type
- difficult to keep track of

(14) Have you ever been to Sweden or have you ever been to Germany?
Negation

- Krifka [2001] further argues that negation is not involved in the algebra of speech acts.

- Negation would allow us to derive disjunction from the combination of conjunction and negation by De Morgan’s law.

\[(\neg[A \& A'] = \neg A \cup \neg A').\]
De Morgan’s law

\[
\begin{array}{|c|c|c|c|}
\hline
p & q & p \land q & \neg[p \land q] \\
\hline
1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 \\
\hline
\end{array}
\]

(15)

\[
\begin{array}{|c|c|c|c|c|}
\hline
p & q & \neg p & \neg q & \neg p \lor \neg q \\
\hline
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 \\
\hline
\end{array}
\]

(16)
It’s possible to quantify into question acts.

Conjunction is the only operation involved in the computation of speech acts

Neither negation or disjunction is possible.
dake-wa

(2-b) *JOHN-dake-wa nani-o kai-mashi-ta-ka?*

John-only-Con what-Acc buy-Hon-Past-Q

- The use of *-wa* forces the exhaustification by *dake* to take place over question acts, and
- triggers negation of alternative acts,
- which is not a valid move in terms of conversational games.

(17) Intended Interpretation of (2-b)

a. As for John, what did he buy and
b. *It is not the case that as for other people, what did they buy?*
Intensional vs. Extensional

Following Groenendijk and Stokhof (1984), Krifka categorizes question-embedding verbs into *intensional* and *extensional* verbs.

Intensional verbs allow a pair-list reading only with a universal quantifier, as seen in matrix questions,

while extensional verbs can have a pair-list reading with other quantifiers as well:

(18)
 a. Doris asked which dish ✓ every guest/#most guests made. (intentional)
 b. Doris found out which dish ✓ every guest/✓ most guests made. (extensional)
Krifka proposes that intensional verbs directly embed a question act, hence pattern like matrix questions.

The quantified NP *most guests* attempts to quantify into question acts.

Most guests involves disjunction, which is not a valid operation for speech acts.

(19) *Doris asked [most guests [Quest [which dish they made]]]

(18-a)
In contrast, extensional verbs introduce a type-shifting operator TA that shifts the question act into the set of propositions that are true answers to the question act.

Consequently, extensional verbs support quantifiers other than a universal quantifier because their complements are Boolean objects.

\begin{align*}
(20) \quad & \text{TA(QuestionAct)} = \{p : p \text{ is a true answer to QuestionAct}\} \\
(21) \quad & \text{Doris found out [most guests [TA [Quest [which dish they made]]]]}} \quad \text{(18-b)}
\end{align*}
A parallel pattern is observed for Japanese exhaustification. The intentional verb *kii* ‘ask’ cannot embed a *wh*-question which contains *dake-wa,* while the extensional verb *wakat* ‘find out’ can.

(22) a. *Mary-wa* [ano-mise-de JOHN-dake-wa nani-o kat-ta-ka]
Mary-Top that-store-at John-only-Con what-Acc buy-Past-Q
Bill-ni kii-ta (intentional)
Bill-Dat ask-Past

b. Mary-wa [ano-mise-de JOHN-dake-wa nani-o kat-ta-ka]
Mary-Top that-store-at John-only-Con what-Acc buy-Past-Q
wakat-ta (extensional)
find.out-Past
‘Mary found out as for only John what he bought at that store.’
Embedded Question acts

(22-a) *Mary-wa [ano-mise-de JOHN-dake-wa nani-o kat-ta-ka]
Mary-Top that-store-at John-only-Con what-Acc buy-Past-Q
Bill-ni kii-ta (intentional)
Bill-Dat ask-Past

- *dake is quantifying into a question act, which results in negating alternative question acts.
- As a consequent, (22-a) is predicted to be unacceptable since it involves an illicit operation over speech acts.
True Answers

(22-b) Mary-wa [ano-mise-de JOHN-dake-wa nani-o kat-ta-ka] Mary-Top that-store-at John-only-Con what-Acc buy-Past-Q wakat-ta (extensional) find.out-Past
‘Mary found out as for only John what he bought at that store.’

- the TA operator shifts the question act into the set of propositions.
- Therefore, the operation involved is simply a quantification over the set of propositions;
- hence, the negation introduced by dake can licitly operate over the set and yield the negative meaning ‘It is not the case that as for other people, Mary found out what they bought.’
I take Yoshimura’s analysis that meaning of *dake* involves two commitments; positive and negative.

The use of *dake-wa* indicates the exhaustification at a higher level than the proposition.

Hence, when *dake-wa* is used in a matrix question, it attempts to exhaustify into question acts.

This operation is not valid since negation cannot take scope over a question act.
Other acts

(23) JOHN-dake-wa kita.
 John-only-Con came.

(24) I make an assertion only about John with respect to the question ‘Who came?’ and I assert that John came.
Intuitions

- When *dake* is absent, the implicature of *wa* can be overtly expressed or strengthened.

(25)
 a. JOHN-wa kita. Mary-mo kita kamoshirenai.
 John-Con came. Mary-Add came might
 ‘John came. Mary might have come, too.’
 b. JOHN-wa kite, Mary-wa ko-nakat-ta.
 John-Con came. Mary-Con come-Neg-Past
 ‘John came, and Mary didn’t come.’
Intuitions

When *dake* is present, the continuation is perceived as redundant.

(26)

a. #JOHN-dake-wa kita. Mary-mo kita kamoshirenai.
 John-dake-Con came. Mary-Add came might
b. #JOHN-dake-wa kite, Mary-wa ko-nakat-ta.
 John-dake-Con came. Mary-Con come-Neg-Past
Biscuit Conditional

(27) If you’re hungry, there’s pizza in the fridge. [Siegel, To appear]

(28) If you’re hungry, there is a (relevant) assertion that there’s pizza in the fridge. [Siegel, To appear]

(29) a. If I have your attention now, (there’s a relevant question:) what do you want for dinner?

b. Before you go, (there’s a relevant command:) remember to call when you get there.

c. If you want to talk about weird co-workers, (there’s a relevant exclamation:) what a pervert Len is! [Siegel, To appear]
potential literal acts

Abstract objects consisting only of propositional content and whatever illocutionary force potential can be read directly from their morphosyntactic form, not necessarily the actual illocutionary act that might be performed.

Siegel [To appear]
Potential Literal Acts

(30) Whenever you get hungry, there’s pizza in the fridge. (Chris Potts p.c. to Siegel [To appear])

Potential Literal Acts At any time t at which you get hungry, there is/will be a (relevant) assertion that there’s pizza in the fridge.

Speech Acts at any time t at which you get hungry (PERFORMED ASSERTION) there’s pizza in the fridge

- The speaker certainly will not be performing the assertion at any time t at which the listener gets hungry.
Concluding Remarks

- There seems to exist a strong parallel between
 - the availability of a pair-list reading in Wh-Q with a non-universal quantifier
 - the distribution of \textit{dake-wa} in Wh-Q

- Matrix wh-Q
 - no pair-list reading
 - \textit{dake-wa} is ungrammatical

- Embedded wh-Q
 - pair-list reading available only for extensional predicates
 - \textit{dake-wa} is grammatical only with extensional predicates
The parallel suggests that there is a certain constraint with respect to quantification over question acts.

Krifka’s (2001) analysis of the (un)availability of pair-list reading is applicable to the distribution of *dake-wa* in wh-questions.

But, unfortunately, there are apparent exceptions with other speech acts.

Maybe, the question might be reduced to: why is a potential literal act of question available for assertions and commands, but not for question acts?

